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A theory of the Landau orbital ferromagnetic states for the electrons in metals is presented. The condi-
tions under which such states are realizable in a metal and are observable in a laboratory are presented

and analyzed.

I. INTRODUCTION

Recently, in order to explore the origin of an
extremely strong magnetic field present in dense astro-
physical matter (such as white dwarfs and neutron
stars or pulsars), Canuto, Chiu, Chiuderi, and the
author! introduced a new mechanism that ascribes a
ferromagnetic state for a system consisting of high-
density electrons. Such a magnetized state is named!
the LOFER state (Landau orbital ferromagnetic state).
It was shown? that the LOFER state alone can furnish
the extremely intense magnetic field believed to be
present in such compact stars.® It is then intriguing to
find out whether or not one can realize the LOFER
state in a metal and thus observe it in a laboratory.

In this article, we present the theory of LOFER states
for electrons in a metal and discuss the conditions under
which a LOFER state can be observable in a laboratory.
We do not indicate any specific metal which might be
favorable for the laboratory observations of the LOFER
state. We merely present the conditions or the guiding
rules which enable one to look for a specific metal
suitable for this observation. In view of the low tem-
peratures that can be attained in a laboratory at present
and the purity of metallic samples one can obtain these
days, the LOFER state is at present unlikely to be
observed in a metal in a laboratory. Much of the possi-
bility of observing such a state in a laboratory seems to
depend on the future development of techniques for
obtaining pure metals, low temperatures, and high
pressures.

In Sec. IT we discuss how the LOFER states arise in
a metal and in Sec. IIT we discuss the stability of such
states. We show that the LOFER state is quasistable in
the sense that, once a system is in such a state, it will
stay in the state for any forseeable future. In Sec. IV
we present the conditions under which the LOFER
states are realizable and observable in a metal. We
discuss and analyze some methods to achieve the favor-
able conditions for the observations of such a state in a
laboratory. Finally, two appendices are added to give
definitions, to show relations among some relevant
thermodynamic functions, and to give an estimation
for the energy barrier that is needed to discuss the
stability of the LOFER state.

II. LOFER STATES OF ELECTRONS IN A METAL

It is well known? that the electrons in a metal are well
described by a model in which they are treated as a
2

system of free, charged fermions of spin %, satisfying an
empirically determined dispersion law of

&(p) =8&(pu, Pus P2) - (1

In the presence of a dc magnetic field H, the motion of
these electrons is governed by the Hamiltonian obtained
from Eq. (1) by adding the Zeeman energy term
upo-H (where up=-efi/2mc=—0.578817X 1078 ¢V G™!
is the Bohr magneton and ¢ is the Pauli spin operator)
and by replacing the momentum operator p with the
operator m=p— (¢/c)A (where H= curlA) to satisfy
the requirement of invariance under gauge transforma-
tions.’ The charge e appearing in the above is the same
as that of a bare electron.’ (For convenience, the charge
e is understood hereafter to denote its absolute value
| e].) When the z axis is chosen to coincide with the
direction of the uniform magnetic field H, the vector
potential A can be written as A= (—Hy, 0,0). Then,
the operators (c¢/eH)Y*#, and (c/eH)Y*#, are canoni-
cally conjugate:

[(c/eH)V?#,, (c/eH) %, ] _=1h. (2)

Hence, from the semiclassical quantization rule, one
obtains®

Frydr,=2n(n+v) (ehH/c). (3)

Here » is a non-negative integer, and 1y is a non-negative
constant less than 1. For instance, for a square disper-
sion law [i.e., 8(p) = (1/2m) p%], v is 3. [Equations (2)
and (3) are valid even when the magnetic field H is
nonuniform in the y direction.”] Consequently, the
single-particle energies for the quasielectrons are classi-
fied by the quantum numbers (%, p, p., 0.), and are
given by &,(p.) usH. Each level is degenerate owing
to the quantum number p., and the energy spectrum
consists of a set of spectral branches characterized by
the quantum number #=0, 1, .... For given p, and
spin polarization, the spacing between two neighboring
branches is given by®?8

Asn(pz)=g"+1(p,)~8n(pz)gzw[eﬁf1 / v<%§>]. (4)

Here, the quantity S(&, p.) denotes the cross-sectional
area of p,, bounded by the constant energy surface in
the momentum space and is assumed to be a slowly
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varying function of &. It is given by the relation

S(&, p2) = / fsu t t f dmradmy
const, pz=cong

= ""y(g; § 22 ) dmy
=2m(n+v) (ehH/c). (5)

To understand the effects of the presence of such
discrete branches of the energy spectrum, we consider
the case where the temperature T is zero:and where
there are many branches of the spectrum below the
Fermi energy & (that is, A8,<&K8&p for some values of
p.). As shown in Eq. (4), the spacing A8, is propor-
tional to the magnetic field H, while the Fermi energy
&r can be shown to depend far less sensitively on H than
does AE,. Thus, as the strength of the applied magnetic
field H is increased (or decreased), the branch of the
energy spectrum initially right below (or right above)
the Fermi energy level crosses over and becomes un-
occupied (or occupied) by the quasielectrons. This
effect causes a physical quantity to be periodic with
respect to varying strengths of the magnetic field H.
In fact, any macroscopic observable can be written as
the sum of two distinct parts, namely, the nonoscillatory
part (which is denoted by the superscript n.o.), which
varies monotonically with the magnetic field, and the
oscillatory part (which is classified by the superscript
osc). The oscillatory part comes from the manifest
discreteness in the branches of the quasielectron energy
spectrum when there is an applied uniform magnetic
field H. And thus such terms become evident only in
the quantum domain provided that the thermal broad-
ening as well as impurity broadening of the energy
spectrum does not exceed the spacings of the branches
of the spectrum.

According to Lifshitz and Kosevich,® the thermo-
dynamic potential @ per unit volume and the magnet-
ization M (=—0Q/0H) per unit volume are given as
follows (we choose the unit i=1):

Q(T) My H) =9n.0.+905c, (6)
M=Mn.o.+Mosc’ (7)

where
Qo= — 5 (xp+xz) H?, (8)

Qoscg[(zm*u*) 3/2/21'-2[3:] (wc/zll:*) 3/2a—1/2
5 i cos(mlm*/m) exp(—2wl/w.r)
=1 132 sinh (272 /Bew,)

X cos[ 2wl (p*/w.) Fim—2nly], (9)

Mro=(xp+x1)H, (10)
Moscg_ Ee(zm*’u*) 1/2/27765] (2”*/0)6) 1/2a-—1I2
© cos(mwlm*/m) exp(—2wl/wer)
X 12:'1 172 sinh (27 / Bus, )
X sin[ 27l (u*/w,) Fir—2xly], (11)
02(1/2'"') | 625(#) pz)/apzzie- (12)
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Here, Q=% |g—o denotes the thermodynamic potential
per unit volume in the absence of the magnetic field H,
and u is the chemical potential per electron (u==8p
when T'=0°K). The subindex e is used to denote a
quantity evaluated at the extremal orbital® and the
quantities m* and u* are defined through the relations
2rm*u*=S,(u) and 2wm*= (d/dp)S.(u). Here S.(u)
denotes the value of S(u, p.) evaluated at the extremal
orbital. [For a square dispersion law, S(§,p.)=
T(2m&—p.%), Se(u)=2wmyu, and (d/du)S.(u)=2mm,
so that m*=m, u*=u, and ¢=1.] If there is more than
one extremal orbital, one should add up the contribu-
tion like Egs. (9) or (11) for each of the extremal
orbitals to obtain the expressions for Q°% or M°=. The
symbol =< denotes restriction to the leading term in the
expansion of (w./u*) and (Bu*)~, where 87'=kpT (kpis
the Boltzmann constant) and w,=eH/m*c is the cyclo-
tron frequency. The quantity xp is the Pauli para-
magnetic susceptibility® and is given by?®

xP=3N (&r) (¢/mc)2. (13)

Here N (&r) is the number density of states at the Fermi
surface per unit volume and per one of the spin polariza-
tions. The quantity xz denotes the Landau diamagnetic
susceptibility® and is given by*

~1 ¢ <<"_8 % _ (.98_»
Xe= SN(SF)(C) 2 ap?  \9puOpy (1)

av

where (- -+ ),y denotes the average of the quantity taken
over the Fermi surface. For the case of the square
dispersion law, one obtains the well-known result xr=
—1xp. For a smooth Fermi surface, one expects (—xz)
to. be roughly %(m/m*)2xp. The quantity = is the
relaxation time which reflects the scattering of a quasi-
electron by impurities, lattice imperfections, phonons,
etc. This 7 is different from the transport collision time
74 As is well known,! 7, is the collision time with the
forward scattering being softened out. In the region of
our interest, namely, where w<&u* and 8~<<u*, 7 can
be considered as a quantity very weakly dependent on
the magnetic field H, and thus, for practical purposes,
one can consider 7 as independent of H. The factor
exp(—2nl/wr) in Egs. (9) and (11), which is due to
Dingle,! represents the broadening of the branches of
the energy spectrum due to the presence of impurities.
Thus the finiteness of the relaxation time r makes the
oscillatory term exponentially small. Similarly, the pres-
ence of thermal broadenings of the branches of the
energy spectrum is represented by the factor

[sinh (27%/Bw.) T

in Egs. (9) and (11).

It should be noted that the argument of the sinusoidal
functions in the expressions for the oscillatory terms is
2mlp* JwFir—2xly. Since (2mlu*/w.) is proportional
to H-! and p*>w, in our region of interest, one has the
following two properties for the oscillatory terms. First,
they are rapidly oscillating functions of H and cannot
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be expanded in powers of H. Second, a derivative with
respect to H is u*/w, larger than the original quantity.
Consequently, the nonoscillatory terms can be obtained
by using perturbation theory with the terms containing
H as perturbations, while the oscillatory terms can
never be obtained by using any such perturbation
method. And, since M=—(0Q/0H), M°* is of the
order of u*/w, larger than Qo=¢, which allows the oscil-
latory part of the magnetization to be observable, and
what one observes is, in fact, the de Haas—van Alphen
effect. In deriving the oscillatory terms given by Eqs.
(9)-and (11), the method of stationary phase® is used
to evaluate certain integrals asymptotically.?
We set x=27?/Bw, and consider the region where

x> 1 (15)

is satisfied. In such a region, the terms with /=1 in Eqs.
(9) and (11) dominate over the other harmonics
(namely, those terms with />2), and Egs. (9) and (11)
are simplified to

Qose["(272m*B1)3/2/ 20287 cos(mwm*/m) @~ /2y 312
X exp(—ax8/w7) (sinhx)~! cos(Bu*x/rFir—2mry),
(16)

Mose=—T[e(2m*B3~1) 12/ 2n2c Ju* cos(wm™*/m) a1/
Xx'/? exp(—xB/wr) (sinhx)~! sin(Bu*s/mF ir—2my).
(17)

In measuring the de Haas-van Alphen effect in the
noble metals in the region governed by Eq. (15),
Shoenberg' observed oscillatory terms much richer in
harmonic content than was to be expected from Eq.
(17). He resolved this discrepancy between observation
and theory by pointing out that the electrons in the
metal do not see the field H alone but actually see the
field B=H-47M." That is, an electron in a metal does
not discriminate the magnetic field due to the external
source from that due to the motions of all other elec-
trons in the system. Thus, the correct expressions for
Eqgs. (2)-(17) are obtained by substituting

B=H-+4rM (18)

in place of H for the conventional expressions given by
Egs. (2)-(17). This conjecture by Shoenberg®® that A
should be replaced by B in the conventional expressions
was proven by Pippard! based on the relations between
thermodynamic functions. In fact, noting the principle
of minimal . electromagnetic interactions and that
curlA (x) = B(x), one obtains the rigorous justification
of Shoenberg’s conjecture as was done by the author.’s
(Definitions and relations among the thermodynamic
functions are listed in Appendix A). Thus, hereafter
Egs. (2)-(17) are understood to be modified by re-
placing H with B everywhere, and the cyclotron fre-
quency . is w.=eB/m*c=e(H+4wM) /m*c.

Because of this substitution of H by B, the magnetiza-
tion M governed by Egs. (7), (10), and (11) satisfies
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a nonlinear equation. In fact, this nonlinear equation
for M, in the case of a strong external magnetic field H,
has been exhaustively studied in the past.’®:1* However,
an intriguing question is whether or not the nonlinear
equation has nontrivial solutions for M even when the
external magnetic field H is absent. Such a nontrivial
solution represents the presence of a spontaneous mag-
netization that is consistent with the dynamics of the
electrons and the Maxwell equations. The author and
his co-workers! have shown that in fact such nontrivial
solution exist for a system containing electrons at a
high density. A stable state corresponding to a relative
energy minimum exhibiting such a spontaneous mag-
netization is named! the Landau orbital ferromagnetic
state (or, briefly, the LOFER state). In the remainder
of this article, unless otherwise mentioned, we will
consider the case where H=0 so that B=4xM or
w,=4dmeM /m*c.

To understand how a LOFER state arises, we first
consider the case where | M™° |>> | M| so that
M=M»~°-, This is the case when the temperature is
high enough or the metal is impure. For this case, as
long as 4w (xp+x1) <1, there is no nontrivial solution
for M (that is, there is no spontaneously magnetized
state). As discussed earlier, (—xyz) is roughly equal to
2 (m/m*)?xp and 4rxp is equal to (a/7) (vr/c), which
is roughly 107% in order of magnitude for a metal. [ Here
a=e¢2/fic=(137.088- - -)~1is the fine-structure constant
and vy is the Fermi velocity.] Thus, as long as m*/m 2
1072, M~ alone cannot give rise to a LOFER state.
(From this, one can conclude that a theory based on
treating the electromagnetic interaction as a perturba-
tion, cannot give rise to a LOFER state.) It should be
noted that for a square dispersion law, 47 (xp+xr) =
(87/3)xp= (2a/37) (vp/c)=~0(1075), and for metals,
the condition 47 (xp+x1)<<1 usually is satisfied.

Since, in general, the case where M= M"-°- (or, equiv-
alently, | M| >> | Mo |) does not exhibit a LOFER
state, one has to recognize the vital importance of the
presence of the oscillatory part of the magnetization
M= in discussing how the LOFER states can arise. We
thus consider the case where | M| > | M»°-|. For
simplicity as well as for the sake of practical interest,
‘we restrict ourselves to the region where temperature
is high enough so that the condition (15) is valid but
is not high enough so that | Mn-°- | >> | M°s | is invalid.
In such a region, from Egs. (7), (10), and (17), one
obtains the equation governing the (nonzero) spon-
taneous magnetization as

1—47r(xp+x1)=— cos(wm*/m) (au*/x3)
X (28/m*c?a)V2x3/2¢—=6Im7 (sinhx )1
X sin[ (Bu*/7)xFir—2my]. (19)

We note that because of Bu*>>1, the sinusoidal function
sin[ (Bu*/m) xFir—2my] is an extremely rapidly oscil-
lating function of x. We also note that the quantity
x%2/sinhx attains its maximum values of (1.1457---)7!
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at x=1.288.--. Thus, Eq. (19) has a solution if
cos?(mm*/m) (/%) 2(Bu*) (2u*/m*c%a)
X exp(—2.576+«+8/mr)

> (1.3128+ ) [1—dnr(xp+x1) I,

or it has a solution if T<T, (or 8>8.), where T,
(or B '=kpT,) is given by

(Beu®)1=(0.7617+ - +) cos®(wm*/m) (a/7?)?
X (2u*/m*ca) [1— 4w (xp+xz) I
X exp[— (2.576+++)B./mr]. (20)

Here, the numerical factor 1.3128+..=(0.76173..+)1
comes from the factor (x3?/sinhx)~? evaluated at x=
1.288- -+, [Equation (6) of Ref. 1is in error. There, the
factor (#*)3/2/sinha* should be replaced by its square
and then evaluated at x*=1.288- .., which makes Eq.
(6) of Ref. 1 equal to Eq. (20) given above, provided
that the sample is pure (i.e., 7— ) and 47 (xp+x2) <<
1. The author is most grateful to Professor Shoenberg
for pointing out this error to us.1®]

The strength of the spontaneous magnetization M
can be estimated by using the relation 27%/Bw.=
1.288- - -, The resulting magnetization is given by

ArM (T,)=21.139X 105(m*/m) ks T.(CK)~ G.  (21)

[Relations similar to Egs. (20) and (21) are also
obtained by Shoenberg.!®] As mentioned earlier, because
of the presence of the rapidly oscillating function
sin[ (Bu*/w)xFir—2ny], below T, there are many
other nontrivial solutions for M in the neighborhood of
a given solution. The difference AM between two neigh-
boring solutions is roughly (w,/u*)M and thus such
solutions are densely populated.

For a pure sample (i.e., 7> ) and for the square
dispersion law, Eq. (20) reduces to

kpT,/8p==20.76 (avp/m3) 210" (vp/c)2.  (22)

Equation (22) is the same as Eq. (5) of Ref. 1. For the
electrons in a metal governed by the square dispersion
law, T, and 4xM (T,) are of the order of 1077°K and
1072 G, respectively. These values of temperature and
magnetic field are much too low and too weak to be
managed by present-day laboratory facilities. However,
as was pointed out in Ref. 1, for the electrons in com-
pact stars [such as white dwarfs and neutron stars
(or pulsars) ], the values of spontaneous magnetizations
resulting from the LOFER states can account for the
strength of magnetic fields expected to be present in
such astrophysical objects.'® For example, for &r~1
MeV (which corresponds to a white dwarf), 4rM~
10° G and T,~10¢°K, while for &z~ 100 MeV (corre-
sponding to a neutron star), 4rM~108 G and T~
108°K. (Of course, the relativistic effects modify these
values, but not much.?) Thus, the LOFER states have
significant astrophysical applications.
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III. STABILITY OF LOFER STATE

To discuss the stability of a LOFER state with
respect to variations in the magnetization M, we con-
sider the Gibbs free-energy density G(T, u, B). Since,
in this section, we are interested mainly in the variable
B (or M), the thermodynamic variables T and u are
not written down explicitly so that G(B) denotes
G(T, u, B), etc. From Egs. (A8), (A1l), and (A15),
one obtains a theorem stating that a LOFER state
corresponds to an extremum point of the free energy
G(B) [i.e., (8G/0B)r,=0]. Of the extrema of G(B),
the LOFER states are defined to correspond to the
minima of G(B). There exists a one-to-one correspond-
ence between the LOFER states and the minima of
G(B) [i.e., a set of B such that (0G/0B)r,=0 and
(8°G/0B?) 1,,> 0. The reason why the maxima of G(B)
are excluded from the consideration of the LOFER
states is that such maxima correspond to magnetically
unstable states. In fact, there is a well-known stability
theorem for magnetic materials. This theorem! states
that, for an isotropic magnetic material, magnetic stabil-
ity requires (a) B-H>0,and (b) [(H-BB*)/dB]r <
0. When the condition (a) is violated (i.e., B-H<0),
such a system is absolutely unstable against having a
component of magnetization perpendicular to the direc-
tion of H; while, when the condition (b) is violated
{i.e., [0(H-BB™)/dB]r <0} such a magnetic system
is absolutely unstable against change in the component
of magnetization parallel to H. Since in our case H=0,
the stability condition (a) states that a system in a
LOFER state is in a critical state.”” However, this pos-
sible instability does not interest us because, even if
such an instability could occur, it does not change the
component of the magnetization that is associated with
the LOFER state. Thus, we consider the case when
B and H are parallel and let the field H vanish. In
such a case, the instability condition (b) becomes
(6H/dB)r,>0, which by virtue of Eq. (A8) is equiva-
lent to the condition (8°G/8B?)r,>0. Then the states
corresponding to the maxima of G(B) violate the condi-
tion (b) and thus such states are absolutely unstable
against fluctuations in M. Such an instability is well
known. For example, in the presence of a uniform mag-
netic field, it has been shown (based on microscopic
theory) that a uniformly magnetized state for the elec-
trons in a metal is unstable with respect to a spatially
nonuniformly magnetized state when the condition
(0H/dB)r <0518 [or, (dM/dB)r,> (1/4w) since
B=H~+4rM] is fulfilled.

As one can see from Egs. (A11) and (6), the Gibbs
free-energy density G(B) can be written as G(B) =
G»°-(B)+G*¢(B). Here G*°-(B) = (1/8r)B*+Q»-(B)
and G°**(B) =Q°(B). Below T, because of theoscillatory
behavior of G°*¢(B), G(B) has successive maxima and
minima, and these minima correspond to the LOFER
states. To resolve the question which of two given
LOFER states is more stable, one has to consider the
Gibbs free-energy density G(H). For a given configura-
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tion of the true current (or, external magnetic field),
the value of the corresponding G(H) determines which
of the states is more stable. If the value of G(H) is
lower, the corresponding state is more stable. However,
because of Eq. (A10), G(H) =G(B) when H=0. Thus,
a LOFER state corresponding to a lower value of G(B)
is more stable than the one corresponding to a larger
value of G(B). Consequently, a LOFER state makes a
macroscopic transition to another LOFER state corre-
sponding to a lower value of G(B). During this transi-
tion, the field B changes from one value to another in a
continuous manner. And it is easy to conceive that the
most probable path the system would follow during the
transition is the one given by the free-energy density
G(B). Needless to say, a field B appearing in G(B)
which is not an extremum of G(B) corresponds to a
nonequilibrium configuration. Only at an extremum of
G(B) does the field B correspond to an equilibrium con-
figuration. Since a LOFER state corresponds to a mini-
mum of G(B), there is a maximum of G(B) in between
two given LOFER states and this maximum of G(B)
gives rise to an energy barrier. That is, in order to be
able to make a macroscopic transition from one LOFER
state to another LOFER state, this barrier must be
overcome by the system. It is not necessary that the
whole system makes the transition. Rather, such a
transition occurs through a local fluctuation in M (or B)
which involves a subsystem in a small volume «. But,
in order that the transition be macroscopic, this volume
# cannot be smaller than that of a cylinder with a
cross-sectional area equal to =X (the cyclotron radius
R.)? and a height equal to %X (p. corresponding to the
extremal orbital)~*. Recalling that for the square dis-
persion law, the extremal orbital occurs at p,=0, we
restrict ourselves to the case where the magnitude of p,
corresponding to the extremal orbit does not exceed
#i/R.. Then, we have

u> w R (vp/m*w.2) (2ru*/w,). (23)

If one makes a reasonable assumption that the @
priori probability of the system in the volume % to be
found in the state corresponding to B is proportional to
the Boltzmann factor exp[ —#B8G(B)], the probability
that this subsystem # crosses over the energy barrier
ulAGy is

P exp(—uBAGs). (24)

Here AGy is the energy barrier per unit volume that the
subsystem must overcome in order to make the macro-
scopic transition.

To give an estimate for the barrier height AGs, we
restrict ourselves to the case where the temperature is
infinitesimally lowered from the critical temperature 7,.
As the temperature T is lowered from T, the barrier
height AG, increases, resulting in more stable LOFER
states. Thus, the consideration restricted near 7', would
give an upper bound for the transition probability P
for the given LOFER state. Furthermore, because of
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mathematical simplicity, we consider the spontaneous
magnetization M that satisfies the condition given by
Eq. (15).

The G(B)-versus-B curve can be visualized as follows.
The nonoscillatory part G*°-(B) forms a monotonic
background on top of which the oscillatory part Gos¢(B)
is superimposed and gives many extrema of G(B). Very
close to, but below, T, there are two extremum points
of G(B); one is the maximum and the other is the
minimum. At T, these two extrema coincide at By. That
is, as the temperature is lowered from 7', the maximum
point Bmax of G(B) and the minimum at Bpnj, move
away from each other starting at B,. Obviously the
point B, corresponds to an inflection point of G(B)
when the temperature is 7,. Because of the monotonic
background due to G*°:(B), in order that the LOFER
state [which corresponds to the minimum of G(B)]
make a transition to another equilibrium state (such as
the state with M =0), the subsystem has to overcome
the barrier due to the presence of the maximum of G(B).
This barrier height AG; is given by Eq. (B11). From
Eqgs. (23) and (B11), we therefore have

uBAG> (2.5a) 71 (2mpu*/w0) (c/vr) (AB/B:)2.  (25)
Here w=eBy/m*c. Thus, taking ¢/vz> 102, one has

uBAG> 103, (26)
provided that

> (Te—=T)/To2 () 2mu*) 2, (27)

Equation (27) is consistent with Eq. (B8). The charac-
teristic time of the system is of the order of (w/?)!
which is far less than 1072 sec. Noting that one million
years is equal to 3.1X 10" sec, we have the decay time
7p of the LOFER state when the temperature T is
below T, given by Eq. (27) as

702 (w.) ™ exp (BuAGy)
>>10-3¢1° million years. (28)

Note that e=2.718- -+, which gives the lower bound of
7p as an astronomical time. Therefore, such a LOFER
state is quasistable.

So far we have restricted ourselves to consider the
stability of a LOFER state under thermal fluctuations.
This consideration is valid as long as the system together
with the thermal bath are well isolated from other
energy sources. In practice, the presence of the back-
ground perturbations such as cosmic rays should make
the transition time 7p considerably less than that given
by Eq. (28).

Finally, there can be nonuniform states such as mag-
netic domain structures which are more stable than a
uniformly magnetized LOFER state. However, once a
system is in a LOFER state, it will take the time given
by Eq. (28) to go into a more stable domain structure
or a nonuniformly magnetized state, provided that the
system is well isolated from other energy sources.

A rigorous and complete analysis of the stability of
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a LOFER state does not seem to be feasible. To obtain
a plausible result, we made the following working
hypotheses:

(a) The system is spatially extended, well isolated,
and initially in a uniformly magnetized (LOFER)
state.

(b) In order to disturb a given LOFER state, the
majority of the electronic states that are responsible for

“the LOFER state to exist should be disturbed. Such
states are those corresponding to energy  eigenvalues
located on the extremal orbitals. Thus, for the cases
when the domain wall energy is positive, there is a
minimum size # for the subsystem [which is given by
Eq. (23)] that can make the macroscopic transition as
a whole. (For the cases when the domain wall energy
is negative, a nonuniform state, rather than a domain
structure, is obtained. However, the presence or the
absence of such a nonuniform state involving the charac-
teristic distance much smaller than the cyclotron radius
cannot be easily settled by theoretical analysis. Based
on the results of Ref. 15, we presume that such a non-
uniform state is unlikely to occur.)

(c) The a priori probability of the system to be
found in the state corresponding to B is proportional to
the Boltzmann factor exp[—#8G(B) ], where G(B) is
the Gibbs free energy.

All these plausible assumptions could be violated
when applied to real metals. Especially, in view of the
fact that practically speaking a sample cannot be well
isolated from other energy sources and that the associ-
ated barrier energy is so small for a metal that the
background energy fluctuations could easily make a
uniformly magnetized LOFER state unstable against
the formation of domain structure. Thus, the contents
of Sec. IIT should be considered as a plausible argument.

Iv. DISCUSSION

As was discussed in Sec. III, for the square dispersion
law, the critical temperature T for electrons in a metal
is too low to be managed by present-day laboratory
facilities. Thus, in order to observe the LOFER state
in a metal, one has to enhance the value of T, given by
Eq. (20). This enhancement of T, can be achieved as
follows. First, in order to minimize the disadvantage
due to the presence of the factor exp[ — (2.576+ + +)B./77 ]
in Eq. (20), the sample should be as pure as possible.
Since 7 is different from the transport relaxation time
74r, the sample should be free of not only impurities but
also lattice point defects, grain boundaries, etc. Noting
that the exponential factor actually comes from
exp(—2n/ws) and that exp(—1.0)=0.367---, one
requires wer 2 27 in order to minimize the disadvantage
due to the presence of the finite 7. This condition
wrZ 2w is equivalent to

I>27R,, (29)

where I (=vpr) is the mean free path of the electrons
and R, (=vp/w,) is the cyclotron radius. These require-
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ments of purity are peripheral technological problems
which may be overcome in the future. Equation (29)
states that it is advantageous (with regards to the
problems of the purity of the sample) to have a large
value for the spontaneous magnetization M associated
with the LOFER states.

But there are also intrinsic requirements which are
related to the geometry of the Fermi surface for the
metal. Thus, to enhance T, one should choose a metal
that possesses (a) m*/m very close to an integer [so
that cos?(wm*/m) =17, (b) a= (27)7*[82S (u, p.) /0p:*|.
as small as possible, and (c) u*=S.(u)[(d/du) Se(u) 1!
as large as possible. One cannot take much advantage
of the requirement (c) through a choice of a sample
with [(d/du)S.(u) ]=2wm* being smaller than 2wm.
This is because it contradicts the requirement (a).
The optimum geometry of the Fermi surface is, there-
fore, the one having the extremal orbital with the
following three properties: (a) The cyclotron mass m*
is close to the bare mass m of an electron, (b) the
curvature of S(u, p,) for variable p, at the extremal
orbital is as small as possible, and (c) the cross-sectional
area S.(u) is as large as possible. Considering the usual
metallic density, it is unlikely that one can take much
advantage of using property (c) given above. However,
property (b) can be used to enhance 7, appreciably.
To form a rough idea of the magnitudes of the quan-
tities involved, we consider for example a metal with
m*=m and p*=5 eV. In order to obtain 7.=0.1 m °K,
the quantity a for the metal should be 1073 (whereas
a=1 for the square dispersion law), and the sample
should be pure enough so that there are no impurities
or lattice imperfections within the distance of the order
of a centimeter. These values of 7, and 7 suggest that
the possibility of observing the LOFER states in metals
belongs to the future and depends on the development
of techniques to obtain extremely low temperatures
as well as extremely pure metals.

In view of the fact that techniques for obtaining
extremely high pressures develop so rapidly, we note
that one can increase the magnitude of u* [or Se(u)]
through applying an extremely high pressure to the
metal resulting in an enhancement of T,. This method
of enhancing T, is in accordance with the line suggested
by the high values of 7. and M for the compact stars.
However, we made no detailed studies yet on enhancing
T, through applying high pressure to a metal. .

In the case when there is more than one extremal
orbital, the contributions from each of these extremal
orbitals should be added up to give Egs. (9) and (11).
However, it is not always advantageous to have many
extremal orbitals in order to obtain a high value of T..
This is because the contributions from these extremal
orbitals easily add up destructively leaving a low value
of T.. An analysis of the LOFER states for a metal
having the Fermi surface with more than one extremal
orbital is quite complicated and will not be discussed
here.
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APPENDIX A: SOME THERMODYNAMIC
FUNCTIONS AND RELATIONS AMONG
THESE FUNCTIONS

In this this appendix, we introduce some relevant
thermodynamic functions and give the relations among
these functions. As is well known,” the. work 6/ done
on the field by the external emf (which maintains the
external currents) is

3= (1/4r) [ @xH-B. (A1)
v

Here B=H-+4xM and V is the volume of the magnetic

material which is assumed to be fixed. The Helmholtz

free-energy density F (T, n, B) is introduced as

dF(T, n, B) = — SdT+udn+ (1/4r)H-dB. (A2)

Here 7 denotes the number density of the particles and
w is the chemical potential per particle. .S is the entropy
per unit volume. Since the source of the field H is the
true current while that of the field B (=H-+4xM) is the
true current as well as the magnetization current, the
free energy F(T, n, B) does not represent that corre-
sponding to the system controlling the external magnetic
field. The Helmholtz free-energy density F(7, n, H) is
defined by

F(T,n,H)=F(T,n,B)—(1/4m)H-B, (A3)
and it is the one that should be considered when the
system having a definite number of particles is in con-
tact with a thermal bath and is in the presence of an
external magnetic field. Corresponding Gibbs free-
energy densities G(T, u, B) and G(T, u, H) are given by

G<Ta My B) =F(Ty n, B) —un, (A4)
G<T) Ky H)=F(T) ", H)"*‘[ﬂ’l/ (AS)

These thermodynamic functions have the following
properties:

(a) dG=—SdT—ndu+ (1/47)H-dB, (A6)
d@= — SAT—ndu— (1/4x)B-dH, (A7)
(b) (8G/dB)r,=(1/4m)H, (A8)
(0G/oH)p,,= — (1/47)B, (A9)

(¢) G(T,u,H)=G(T,n, B)—(1/4r)H-B. (A10)
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Thermodynamic potentials per unit volume of the
magnetic material Q(7, u, B) and Q(7, u, H) are given

by

QT,u,B)=G(T,u, B)—(1/87)B2, (All)
QT, u, H)=G(T, u, H)+ (1/87)H2.  (A12)
These functions have the following properties:

(a) dQ=—SdT—ndu—M-dB, (A13)
dQ= —SdT—ndu—M-dH, (A14)

(b) (99/9B)r,=—M, (A15)
(0%/0H) 7= —M, (A16)

(¢) O(T,p,H)=Q(T, u, B)+2r M2 (A17)

The thermodynamic potential Q(7, u, B) can be ob-
tained from the microscopic theory by using the fol-
lowing relation:

Q(T, u, B) = — (8V) " In{Tr[exp(—B(A—puN))T}.
(A18)

Here N is the number operator and f is the Hamiltonian
governing the motions of the particles constituting the
magnetic material. For example, in our case,

A= 3 [dy,! (x)[6(7)+uso- B, (%),

where ¢,7(x) and y,(x) are the field operators!® for
electrons. Equation (A18) can be easily proven as was
done in Ref. 19.

APPENDIX B: HEIGHTS OF ENERGY
BARRIER AG, NEAR CRITICAL
POINT (T,, By)

We recall that the region of our interests is Su*>>1,
(we/p*)<<1, and 22 1. In such a region, the chemical
potential u can be shown® to depend very weakly on
T and B. And thus, this dependence of x on 7 and B
will be ignored (since they contribute only high-order
corrections) and we omit to write down u dependence
of the free-energy density G(T', B) explicitly.

The critical temperature T, (or kgT,=pB;") is given
by the highest value of temperature 7" that enables the
Gibbs free-energy density G(7, B) to possess at least
one extremum point with respect to variable B [that is,
there exists B0 such that (8G/dB)r=0]. We intro-
duce the field By (or w,'=eBy/m*c) such that it satisfies
(a) sin(2ru*/wlFir—2ry).=1, and (b) the closest to
(27%/B.w;) =1.288++-. From Eq. (20), one can easily
see that these values of T, and B, satisfy Eq. (19). And
(T, By) is defined as the critical point of G(T, B) in
the TB plane. As is noted in Sec. ITI, at T, the field B,
is an inflection point of the free-energy density G(T, B) :

(0G/dB) o= (8°G/dB?)¢=0. (B1)

Here the subindex zero denotes the evaluation of
the derivatives at the critical point (7%, By). Fur-
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thermore, because of sin(2ru*/wFir—2my)=1 [or
cos(2ru*/wdFir—2my) =0] and since G°°(T., B),
(8G*=2/9B)o, (9°G°*/9B%),, etc. are proportional to
cos(2mu*/wlFir—2my), one has
Gosc(Tc’ BO) —_ (aGosc/aﬁ)o
= (86" /3BY)g=+--=0.  (B2)
To obtain an expression for the Gibbs free-energy
density G(T, B) near the critical point (7, By), we
note that the power expansion of G(7, B) with respect
to AB=B—B, is possible if and only if | AB/B,| <
(wd/27wu*) because of the presence of the factor
cos(2mu*/w,F1r—2mry) in the expression for G**¢(T, B).
Thus, in order to be able to expand in powers of AB

and A8 (=pB—8.), we consider the neighborhood of the
critical point given by

AB/BX1, (B3)
| AB/B, i K (w0 2wu*). (B4)

Then, in such a region, the Gibbs free-energy density
G(T, B) is given by

G(T, B)—G(T., Bo) =[(dG"->-/8B) o+ (8°G/3B3B)¢AB]
XAB{ 1+O(Aﬁ/ﬂc) +0[(I"*/wco) (ch/wco):” . (BS)

[n deriving Eq. (BS), we made use of Egs. (B1) and
(B2).

As was mentioned in Sec. I11, as T is lowered from T,
the maximum point Bp,ax and the minimum point Bpin,
of G(T, B) (which coincided at By when T'=T,) begin
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to move away from By. These movements are governed,
of course, by Eq. (19). Taking the variations of Eq.
(19) with respect to 8 and B, and noting that
(1—=, cothx,) =0.496--+ (where x,=1.288---), one
has

Aﬁ/ﬂCEEZT (#*/wco) (ch/wco) JZ
+[0.004— (27/w ) J(Aw./wd).

Here Aw, corresponds to Bpax— By or Bumin— Bo. Recall-
ing that (2m/w.r) <1 and restricting oneself to the
region given by

(wc°/27r;4*) 2<< ! ch/wco I <<w00/21r#*’ (B6)

one has
ch/wcogﬂ: (wco/z"rl/'*) (Aﬂ/ﬂc) uz, (B7)

Equation (B7) gives the shifts of Byax and Bni, from
By due to changes in 7. Also, Eq. (B6) is equivalent to

(W) 2mu*) <K AB/BL1. (B8)

Equation (B8) is consistent with Egs. (B3) and (B4).
From Eqgs. (BS) and (B7), we obtain the energy barrier
per unit volume AGy [ =G(T, Bmax) —G(T, Bmin) ] as

AG=2B, | (8°G/3BdB)o | (w’/2mu*)B:(AB/B:)%2. (BI)
Noting Eq. (A8) and H=B—4nM, we have

(0°G/dBAB) =~ (AM°*/3B) == — (Bo/87B.). (B10)
We therefore have
AG= (w/mu*) (Be?/87) (A8/B:)%2.  (B11)
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